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Farmers’ decision to adopt new management or production system depends on production risk. Grain yield data was used to assess
production risk in a field experiment composed of two cropping systems (CNV and ORG), each with eight subsystems (two levels
each of crop rotation (2-yr and 4-yr), tillage management (conventional, CT and strip, ST), and fertilizer input (fertilized, YF and
non-fertilized, NF)). Statistical moments, cumulative yield (CY), temporal yield variance (TYV) and coefficient of variation (CV)
were used to assess the risk associated with adopting combinations of new management practices in CNV and ORG. The mean-
variance-skewness (M-V-S) statistics derived from yield data separated all 16 subsystems into three clusters. Both cropping systems
and clustered subsystems differed as to their ability to maintain a constant yield over years, displayed different yield cumulative
probabilities, exhibited significant and different M-V-S relationships, and differed as to the reliability of estimating TYV as a
function of CY. Results indicated that differences in management among cropping systems and subsystems contributed differently
to the goal of achieving yield potential as estimated by the cumulative density function, and that certain low-input management
practices caused a positive shift in yield distribution, and may lower TYV and reduce production risk.

1. Introduction

Production risk influences farmers’ decision to adopt a
new management practice or a production system [1];
therefore, the sustainability of cropping systems is becoming
increasingly important to farmers and researchers alike
[2]. Although management systems with reduced chemical
and energy inputs are of particular interest in assessing
sustainability [3, 4], some of them can be less stable
than others depending on the cropping system in question
[2, 4]. Yield instability, whether caused by spatial and/or
temporal variation, can be identified and measured based
on performance of long-term experiments [5]. Farmers may
not be able to fully manage spatial variation if temporal
variation is a strong and recurring factor [6]. Temporal yield
variation can be managed to some extent by making the right
management decisions at the right time; however, it is equally
important for famers, through investment and knowledge, to
predict and control this variation [6, 7].

Quantifying treatment main effects in cropping systems
experiments provides valuable information that can be

augmented by examining the interaction between years and
treatment [8] through which cumulative effects of treatments
can be measured and compared; the latter can help unmask
the real effects of fixed factors. Statistical analysis of long-
term cropping systems experiments is generally more com-
plicated than that of short-term experiments [4]; it requires
a specific methodology of data processing and of biometric
analysis. Principal components analysis (PCA), partial least
squares (PLS) regression, and restricted (or residual) maxi-
mum likelihood (REML) are becoming increasingly used in
analyzing and interpreting results of long-term experiments
that include fixed and random factors, categorical and
continuous variables, and spatial and temporal variation
[4, 9, 10] The statistical analysis procedure of repeated
measurements of annual crop yield during the course of a
cropping systems experiment using REML is widely used
[9, 10] to account for the serial correlation (i.e., variance-
covariance) among measurements taken on the same exper-
imental unit over time. Also, repeated measurement analysis
provides models which are more parsimonious than the one



2 International Journal of Agronomy

implied by multivariate analysis of variance (MANOVA),
accommodates several error terms, and can easily handle
incomplete designs [10].

Crop yields and their temporal variances are influenced
by management factors, especially crop rotations [4, 11].
However, cropping systems can have larger influence on
the temporal variability and stability of crop yields [12].
Therefore, it is more appropriate to compare the perfor-
mance of cropping systems and not just to quantify the effect
of single factors in a cropping systems experiment [2, 4].
The objectives of this long-term study were to (1) quantify
multifactor and multivariate impact on the statistical deter-
minants of the cumulative density function of total yield in
conventional, organic cropping systems and their subsystems
and (2) model the impact of cumulative yield on temporal
yield variance as influenced by management practices that
can be easily implemented on the farm.

2. Materials and Methods

2.1. Field Experiment. A long-term cropping systems exper-
iment was established in 2002 on a land area of about
3.0 ha as a split-plot randomized complete block design with
four replications (i.e., blocks). The experimental site was
uniformly cropped for one year prior to the start of the
experiment. The predominant cropping system practiced by
farmers in this part of the upper Midwest of the United
States (45◦41′N, 95◦48′W at 370 meters above sea level)
is based on conventional management of a 2 yr corn-
soybean crop rotation using conventional tillage and external
inputs (fertilizer, herbicides, etc.). Sixteen subsystems were
formulated as combinations of two levels each of cropping
systems (conventional and organic), crop rotation (2-yr of
corn (Zea mays L.) and soybean (Glycine max (L.) Merr.),
and 4-yr of corn-soybean-wheat (Triticum aestivum L.)-
alfalfa/alfalfa (Medicago sativa L.)), tillage (conventional and
strip tillage), and N fertilizer (fertilized and nonfertilized).

Fertilizer rates (inorganic N source for the conventional
and animal manure N source for the organic cropping
system) were determined for each crop on the basis of annual
soil analyses and regional N recommendations. The Nitro-
gen Decision Aid software (http://www.ars.usda.gov/services
/software/download.htm?softwareid=85) was used to deter-
mine annual N fertilizer rates for each crop and cropping
system. Two full rotation cycles of the 4-yr crop rotation
and four full rotation cycles of the 2-yr crop rotation were
completed during the course of the experiment. All phases
of each crop rotation were present each year; therefore,
interaction with the environment was not a concern because
all crops were exposed to the same annual environmental
fluctuations and over the duration of the experiment.
Details of the experimental design, crops, crop rotations,
management practices, and inputs are presented elsewhere
[4].

2.2. Measurements. Grain yield in each of eight years (2002–
2009) was measured from a central 15 m2 mechanically
harvested strip per plot of corn, soybean, and wheat and

adjusted to a moisture content of 15.5, 13.0, and 13.5%,
respectively. Total dry matter yield of alfalfa was measured on
two 0.5 m2 subplots per plot harvested three times per year,
and adjusted to a moisture content of 15.0%. Measured yield
data were expressed in Mg ha−1 for each subsystem and then
used for further statistical analyses and modeling. Annual
and total yields were used to calculate annual and cumulative
yield means (years 1 to 8), medians, temporal yield variances,
coefficients of variation, skewness, and kurtosis and to
construct yield frequency distributions for each cropping
system. The M-V-S estimates for subsystems were used to
cluster them into three distinct groups (Clusters), based on
results of a preliminary principal components analysis (see
below).

2.3. Statistical Analyses. Principal Components Analysis
(PCA) was used to identify possible associations (i.e., load-
ings on the first PC) and quantify the amount of total
variation accounted for by statistical descriptors, cen-
tral moments, two cropping systems (Conventional and
organic), their components (i.e., crop rotations, tillage,
and fertility management options), and the resulting 16
subsystems. The correlation matrix between variables was
used in the analyses to give variables equal weight after
standardizing the variances to a value of 1. The results of
PCA were used to classify the 16 subsystems into those with
significant positive, negative, or no significant loadings on
PC1. Two demarcation lines at the ±0.2 loadings separate
these subsystems (Figure 1).

Repeated measurements analysis using REML with first-
order autoregressive (AR1) models appropriate for equally
spaced data (i.e., annual yield estimates) and an option to
allow for heterogeneous variances over years, was used on
annual yield data of all subsystems [9]. A linear mixed model
of the form,

Yijk = μ + bi + τj + di j + γk + ak +
(
τγ
)
jk + (τa) jk + ei jk,

(1)

was used to perform the analyses; where μ is a overall mean,
bi ∼ N(0, σ2

B) is the random effect of block i; τj is the fixed
main effect of treatment (i.e., subsystem) j; di j ∼ N(0, σ2p)
is the random plot error for the experimental unit in block
i receiving treatment j; γk is the fixed main effect of cycle k;
ak ∼ N(0, σ2

Y ) represents the random effect that is associated
with yield measurement taken in the kth year of the study;
(τγ) jk is the fixed interaction effect that is associated with

treatment j and cycle k; (τa) jk ∼ N(0, σ2
YT) represents the

random interaction effect for treatment j in the kth year;
ei jk ∼ N(0, σ2) is the random error that is associated with
the yield measurement at year k on the experimental unit in
block i receiving treatment j. A cycle is defined as the factor
representing the fixed effect of years.

2.4. Modeling. Two modeling approaches were employed to
evaluate and compare yield and temporal variance of both
cropping systems and those of clustered subsystems; these
were (1) cumulative probabilities of obtaining a given yield
level based on empirical cumulative density function (CDF)
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and on the normal distributions which were estimated using
curve fitting. Empirical cumulative density functions were
fitted to yield data, and the ±95% confidence ellipsis was
constructed using a kernel density estimation procedure [9].
The central moments generated by curve fitting, in addition
to statistical descriptors describing yield histograms, and
the cumulative probability (labeled as y2-y1) of obtaining
total yield within the category boundary (labeled as x2-
x1) with the highest frequency, were used to compare and
contrast the conventional and organic cropping systems and
the clustered subsystems; (2) Calibration PLS regression
models were developed using 75% of cumulative yield data
points to predict temporal yield variance as a measure of
yield stability over time for each of the cropping systems
and the clustered subsystems; a validation procedure was
performed by deploying the calibration model to predict the
remaining 25% data points [9]. Temporal yield variance was
predicted (and validated) as a function of cumulative yield
for each cropping system and for subsystems clustered in
three groups. A model of the form,

X = t1p′1 + t1p′1 + · · · + tMp′M + EM , (2)

was used to perform the analyses; where X is a matrix
of explanatory variables (i.e., cumulative yield data) for
temporal yield variance given by the vector y in (3), p′M
are K-dimensional vectors called X-loadings and EM is the
residual matrix, and

y = t1q1 + t2q2 + · · · + tMqM + fM , (3)

where tM (M = 1 to 8 years, called the latent variables)
and the qM are called the y-loadings. In this model, the
dependency among the K-explanatory variables is broken
up, and the relationship between X and y is transmitted
through the latent variables tM .

Cumulative yields with significant regression coefficients
were reported in the validation PLS models (4) to (8). The
residual mean squares error (RMSE) and the coefficient of
determination of the validation model (Q2) were reported
for each PLS model as indicator of its significance and
measure of its reliability, respectively. Relevant modules
in GenStat Version 10 [9] were used in data processing,
statistical analyses, and modeling.

3. Results

3.1. Total Variation. Principal components analysis captured
a large portion (R2 = 0.86) of total variation in one PC,
and the validation model accounted for 0.74 of that variation
(Figure 1). Differences between the conventional and organic
cropping systems were the largest based on their loadings on
PC1, followed, in decreasing order, by differences between
fertilizer, tillage, and crop rotation treatments. Loadings
of the sixteen subsystems on PC1 ranged from maximum
positive (Conventional system, 2-yr rotation, conventional
tillage, with N fertilizer; C2CTYF) to maximum negative
(Organic system, 2-yr rotation, strip tillage, without N
fertilizer; O2STNF). Most subsystems with the YF input
loaded positively and most subsystems with the strip tillage
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Figure 1: Loadings of, calibration (R2 = 0.86), and validation
(Q2 = 0.74) variation accounted for by statistical descriptors,
central moments, subsystems, and factors on the first principal
component based on 35 explanatory variables/factors in a long-
term cropping systems experiment.

nonfertilized- (STNF-) input loaded negatively on PC1.
Loadings of statistical descriptors and central moments
were clustered in two groups (Figure 1): mean yield and
its descriptors, had positive loadings, while those describing
the shape of yield distribution (i.e., skewness and kurtosis)
as well as the coefficient of variation (CV) and RMSE had
negative loadings on PC1. The eight subsystems within the
±0.2 bands, as well as crop rotations and the residual mean
squares error (RMSE), explained the remaining portion
(R2 = 0.14) of total variation in PC2.

3.2. Mean-Variance-Skewness (M-V-S) Analysis. The three-
way relationship between S and the other two central
moments (M-V) was positive and significant (r: S/M-V =
0.75; P < 0.001; Figure 2(a)); however, the relationship was
smaller in magnitude (0.45; P < 0.01) when based on total
yield and its variance and skewness estimates (Figure 2(b)).
The clustering algorithm resulted in a complete separation
between the three clusters in the first (Figure 2(a)) but not
the second case (Figure 2(b)). Cluster 1 was composed of
four conventional subsystems, Cluster 3 was composed
of five organic subsystems, and the intermediate Cluster
2 was composed of a mixture of four conventional and
three organic subsystems. The decreasing level of skewness
(Figure 2(a)) was associated with increasing levels of both
mean and variance suggesting that larger mean yields may
tend to reduce skewness of yield distribution in spite of
the increased variance. However, total yield seemed to have
a much larger buffering capacity than mean yield thus
resulting in a relatively lower three-way correlation (0.45;
Figure 2(b)).

The magnitude and level of significance of bivariate M-
V-S correlation coefficients varied between cropping systems
and clusters within systems (Table 1). Significant positive
r-values (0.37 to 0.90) were found between mean and
variance values across cropping systems and clusters, and
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Figure 2: Three-dimensional plots of central moments (mean yield, variance, and skewness, M-V-S, (a); total yield, variance, and skewness,
(b) for 16 subsystems in a long-term cropping systems experiment.

Table 1: Simple bivariate correlation coefficients between mean-
variance-skewness in two cropping systems and three subsystem
clusters of these systems.

Cropping
system/cluster

Statistic
mean/variance

Variance Skewness

Conventional
Mean 0.90∗∗∗† −0.89∗∗∗

variance −0.74∗∗

Organic
Mean 0.57∗ −0.83∗∗∗

variance −0.33∗

Cluster 1
Mean 0.90∗∗∗ −0.89∗∗∗

Variance −0.72∗∗∗

Cluster 2
Mean 0.37∗ −0.58∗∗

variance −0.44∗

Cluster 3
Mean 0.65∗∗ −0.86∗∗∗

variance −0.59∗∗
†

Correlation coefficients followed by ∗, ∗∗, ∗∗∗ are significantly different at
the 5, 1, and 0.1% level of probability, respectively.

significant and negative correlation coefficients were found
between skewness and each of mean and variance; the former
(−0.58 to −0.89) had larger magnitude and stronger level of
significance than the latter (−0.33 to −0.74).

3.3. Repeated Measurements Analysis. Results of repeated
measurements analyses are summarized in Table 2. The F-
values (i.e., ratio between variance due to a fixed factor and
that of the experimental error) and their level of significance
illustrate the dynamic impact of years, subsystems, and their
interactions. The steady increase in F-values was largest
for years followed, in decreasing order, by subsystems and
their interaction. Largest changes in F-value for years were
observed at the beginning of the second rotation cycle (i.e.,

Table 2: Summary of repeated measurements analysis of variance
of cumulative yield using restricted maximum likelihood with
autoregressive correlations.

Number of years
(d.f.)

F-value years
F-value

subsystems
F-value

interaction

2 (1) 5.22∗† 3.92∗∗ 0.23 n.s.

3 (2) 9.10∗∗ 17.44∗∗∗ 0.64 n.s.

4 (3) 7.25∗∗∗ 42.18∗∗∗ 0.58 n.s.

5 (4) 50.05∗∗∗ 71.05∗∗∗ 1.83∗∗

6 (5) 62.08∗∗∗ 79.62∗∗∗ 2.25∗∗

7 (6) 66.12∗∗∗ 80.84∗∗∗ 3.56∗∗

8 (7) 77.96∗∗∗ 79.55∗∗∗ 3.87∗∗
†

Values followed by ∗, ∗∗, ∗∗∗ are significantly different at the 5, 1, and
0.1% level of probability, respectively; n.s., not significant.

year 5) and at the last year of the experiment (year 8). This
change coincided with similar changes, but smaller in mag-
nitude, in F-values for subsystems and their interaction with
years. The magnitude of F-value for the interaction between
years and subsystems lagged behind, and it became of
statistical significance at year 5. In comparison, F-values for
subsystems increased at a faster pace than those for years and
became almost equal at the end of the experiment (year 8).

3.4. Cumulative Density Function (CDF) and M-V-S of
Total Yield. Most descriptive statistics and central moments
differed significantly between conventional and organic
cropping systems (Figures 3(a) and 3(b)). During the course
of the experiment, conventional and organic cropping sys-
tems produced a total of 3746.18 and 2550.3 Mg of dry
matter, respectively, with the respective means of 39.0 and
26.57 Mg ha−1. Similarly, minimum and maximum yields of



International Journal of Agronomy 5

20 25 30 35 40 45 50 55 60

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti

ve
pr

ob
ab

ili
ty

Empirical CDF
Normal

+95%
−95%

20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

Mean = 39.00
Confidence −95% = 37.35
Confidence +95% = 40.70
Median = 38.53
Sum = 3746.18
Minimum = 25.14
Maximum = 57.61

Percentile 10 = 28.41
Percentile 90 = 50.25
Range = 32.47

Variance = 68.40

Confidence SD −95% = 7.24
Confidence SD +95% = 9.64

Skewness = 0.27
Kurtosis = −0.79

Total yield (Mg ha−1)

K-S d = .08682,P > .20; Lilliefors P < .10

X ≤ category boundary

n
u

m
be

r
of

ob
s.

Lower quartile = 32.00
Upper quartile = 45.96

Quartile range = 13.96

Std.dev. = 8.27

Coef. var. = 21.19
Standard error = 0.84

y1

y2

x1 x2

(a)

y1

y2

x1 x2
10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti

ve
pr

ob
ab

ili
ty

Empirical CDF
Normal

+95%
−95%

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Variance = 34.97
Std. ev. = 5.91
Confid

d
ence SD −95% = 5.18

Confidence SD +95% =6.89

Skewness = 0.098
Kurtosis = −0.22

Mean = 26.57
Confidence −95% = 25.37
Confidence +95% = 27.76
Median = 27.00
Sum = 2550.30
Minimum = 11.90
Maximum = 39.96
Lower quartile = 22.22
Upper quartile = 29.79
Percentile 10 = 19.34
Percentile 90 = 35.52
Range = 28.00
Quartile range = 7.57

Total yield (Mg ha−1)

K-S d = .05925,P > .20; Lilliefors P > .20

X ≤ category boundary

n
u

m
be

r
of

ob
s.

Coef. var. = 22.26
Standard error = 0.60

(b)

Figure 3: Descriptive statistics, central moments, and empirical and normal cumulative density functions (CDF) of conventional (a) and
organic (b) cropping systems.

the conventional cropping system were much larger than
those of the organic. The largest frequency in conventional
cropping system was for the 35–40 Mg ha−1 yield category,
followed by 30–35 Mg ha−1; in the organic cropping system,
it was 25–30 Mg ha−1, followed by the 20–25 Mg ha−1 yield
category. The distribution curve based on total yield of
the organic cropping system was less skewed (0.098) than
that of the conventional cropping system (0.27) which was
positively skewed and with less kurtosis (−0.22 versus−0.79)
although their respective medians were very close to their
means. The larger mean yield of the conventional cropping
system was associated with larger variance (68.4 Mg ha−1)2as
compared to the organic cropping system (34.97); however,
their long-term coefficient of variation values (21.19 and
22.26%, respectively) was almost equal.

Four subsystems, all belonging to the conventional crop-
ping system, clustered together based on their M-V-S values
to form Cluster 1 (Figure 4(a)). The fertilizer input (YF)
was the factor common to all subsystems. The remaining
factors (2-yr and 4-yr crop rotations, and conventional and
strip tillage) had, more or less, the same impact on statistical
descriptors and central moments of this cluster. The long-
term mean-variance (M-V) values (45.0 and 37.15, resp.),
but not skewness (S = 0.18), were the largest among all three
clusters and were associated with the smallest coefficient
of variation (CV = 13.53%). Yield distribution curve was
slightly positively skewed, with the mean and median being
almost equal. The largest frequency was found for the 45–
50 Mg ha−1 yield category, followed, in decreasing order,
by 40–45 and 35–40 Mg ha−1 yield categories. The second
cluster (Figure 4(b)) was composed of seven subsystems, four
of which belong to the conventional, and the remaining
three belong to the organic cropping systems. The M-V-
S values (32.0, 24.39, and 0.52, resp.) were intermediate,
except for the skewness which was the largest among clusters.

The nonfertilized (NF) and fertilized (YF) inputs were
the common factors among the conventional and organic
subsystems, respectively. The impact of rotation and tillage
factors on statistical descriptors and central moments of this
cluster was more or less the same. The largest frequency
was found for the 25–30 Mg ha−1 yield category, followed,
in decreasing order, by the 30–35 and 35–40 Mg ha−1 yield
categories. The third cluster (Figure 4(c)) was composed of
five organic subsystems and was characterized by the smallest
M-V-S values (23.37, 21.0, and −0.12, resp.). This is the
only cluster with a negative skewness similar to the organic
cropping system. All subsystems, except O2STYF, share the
nonfertilized (NF) input which may have contributed to the
smallest yield and the largest coefficient of variation (CV =
19.62%) among clusters. Similar to Cluster 2, the impact
of rotation and tillage factors on statistical descriptors and
central moments of Cluster 3 was more or less the same. The
largest frequency was found for the 20–25 Mg ha−1 followed
by 25–30 Mg ha−1 yield category.

3.5. PLS Validation Models. Temporal yield variance (TYV)
of the conventional cropping system as a function of
cumulative yield (CY) during eight years was predicted and
validated by the following PLS model:

TYVCNV = −5.13− 0.002∗ CY1 + 0.212∗ CY3

+ 0.088∗ CY6 + 0.25∗ CY7,

Q2 = 0.71, P < 0.001, RMSE = 1.47.

(4)

The validation model accounted for 0.71 of total variation
in temporal yield variance and included cumulative yield
at four time points (i.e., years) during the course of the
experiment. The first (CY1) had a negative, albeit very small
regression coefficient (β).
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The remaining cumulative yields had positive impact on
temporal yield variance. Except for the small β (0.088) of
CY6, the remaining two were relatively high. The largest
positive impact on temporal yield variance was due to CY7
(β = 0.25) which represents cumulative yield at the end of
the experiment.

Temporal yield variance of the organic cropping system
as a function of cumulative yield during the course of
the experiment was predicted and validated by a simpler
PLS model, as compared to temporal yield variance of the
conventional cropping system:

TYVORG = −1.19 + 0.364∗ CY1 + 0.183∗ CY2

− 0.067∗ CY7

Q2 = 0.45, P < 0.01, RMSE = 1.64.

(5)

The validation model accounted for 0.45 of total variation
in temporal yield variance and included cumulative yield at
three time points during the course of the experiment. The
first two (CY1 and CY2) had large and positive (β = 0.364
and 0.183, resp.) and the last (CY7) had negative (β =
−0.067) impact on TYV.

Temporal yield variance for all four subsystems (within
the conventional cropping system) in Cluster 1 (C1) was
modeled as

TYVC1 = −12.34− 0.134∗ CY1 + 0.048∗ CY2

+ 0.256∗ CY3− 0.165∗ CY4− 0.058∗ CY5

+ 0.146∗ CY6 + 0.375∗ CY7,

Q2 = 0.62; P < 0.001, RMSE = 1.56.
(6)

This model has a smaller Q2 (0.62) and a slightly larger
RMSE (1.56) as compared to the full model developed
for the conventional cropping system. All seven cumulative
yield measurements contributed to this model with a mixed
positive (CY2, CY3, CY6, and CY7) and negative (CY1,
CY4, and CY5) regression coefficients. A general trend of
increasing positive impact over the years can be deduced
from this model.

Only a small (Q2 = 0.33), but significant portion of
temporal yield variance of the heterogeneous subsystems in
Cluster 2, was accounted for by the validation model

TYVC2 = −2.89 + 0.042∗ CY1 + 0.04∗ CY2

+ 0.35∗ CY3 + 0.052∗ CY4 + 0.072∗ CY5

+ 0.066∗ CY6 + 0.069∗ CY7,

Q2 = 0.33; P < 0.05, RMSE = 1.79.

(7)

This model is characterized by the largest RMSE (1.79) as
compared to the remaining models. All regression coeffi-
cients were positive, and, except for CY3 (β = 0.35), they
were small in magnitude. Finally, an intermediate portion of
temporal yield variance (Q2 = 0.45) was accounted for by all

cumulative yields of subsystems in Cluster 3 (all within the
organic cropping system)

TYVC3 = −1.83 + 0.362∗ CY1 + 0.268∗ CY2

+ 0.124∗ CY3− 0.023∗ CY4

+ 0.033∗ CY5− 0.013∗ CY6− 0.078∗ CY7,

Q2 = 0.45, P < 0.01, RMSE = 1.55.
(8)

A mixture of positive, large in magnitude (CY1, CY2, and
CY5), and negative, but smaller in magnitude (CY4, CY6,
and CY7) regression coefficients characterized this model
and resulted in RMSE (1.55) smaller than the one (1.64)
estimated for the full model of the organic cropping system.

4. Discussion

Crop yield density estimation has been the subject of
extensive empirical research, especially in risk analysis [1].
Numerous studies have been conducted [1, 13] arguing for
the existence of nonnormality, skewness, and kurtosis in crop
yields. On the other hand, there is little consensus on the
impact of environmental variables on empirical distribution
of crop yields [14, 15]. The current study was designed to
allow each cropping system to come as close as possible
to achieving its potential yield and to minimize, if not
neutralize, any differential environmental effects on yield
variation [6, 15]. Nevertheless, the statistical analyses of yield
data and its secondary statistics from a long-term experiment
present a number of challenges, including the possible
temporal and spatial correlation, and the high probability of
heterogeneity in the error variance across years [4].

Farmers are mostly risk averse; they are primarily
interested in knowing the probability of getting low yields
that would lead to estimating risk [1, 14]. A simple visual and
quantitative measure of predicting low yield was provided
in this study by the one-dimensional plot of all factors
and central moments in the experiment (Figure 1). Negative
loadings of a cropping system, subsystem, or input are
indicative of lower yields. The negative loading of a central
moment, when associated with a particular factor (i.e.,
system, subsystem, or input), is indicative of the magnitude
of departure from potential yield or departure from its
normal distribution. In addition, although maximum yields
produced by the conventional and organic cropping systems
were 48% and 50% higher than their respective means, their
lower quartiles (LQs, as an additional measure of production
risk) were only 18% and 16% smaller than their respective
means (Figure 3); the LQ is expected to be produced by each
cropping system at a cumulative probability of 25%.

The bivariate (Table 1) or three-way variance-covariance
structures of M-V-S characteristic of each cropping system
or clustered subsystems, although similar in sign (positive
or negative), were different in magnitude and in their level
of significance. These differences may suggest that similar
management options among cropping systems contributed
differently to the goal of achieving their yield potential,
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Figure 4: Statistical descriptors, central moments, and empirical and normal cumulative density functions (CDF) of 16 subsystems in three
clusters (A, B, and C) based on their M-V-S means.

triggered changes in the bivariate and three-way M-V-S
relationships, and influenced the yield distribution and its
cumulative probability. The small skewness, kurtosis, and
coefficient of variation values are a result of combining
all crop yields for each cropping systems, or subsystem
over time; however, statistical differences persisted due
to differences between systems or between subsystems in
response to management and input factors. Any input
or management practice that reduces positive skewness,
especially when associated with small coefficient of variation
as a measure of static stability of yield over years, is important
for the sustainability of any cropping system. Such input or
management practice is expected to increase yield and to
create a more favorable risk environment [16, 17]. In the
graphical analyses (Figures 3 and 4), the intersection between

the normal and empirical cumulative density function curves
indicates the point at which positive skewness passes over
to negative skewness, thus triggering a shift towards the
negative side of the yield distribution curve, a change in yield
distribution, and lower sustainability.

The design of this long-term experiment and the statis-
tical analyses took into consideration the random temporal
variation and prevented it from masking the real effects
of fixed factors (i.e., subsystems, in this study) [6, 8].
Additionally, repeated measurements analysis allowed for
heterogeneity across years and provided statistical evidence
of the relative importance of years, subsystems, and their
interaction (Table 2) [9, 18]. The interaction between years
and subsystems became significant and persisted until the
end of the experiment, when the magnitude of difference
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between subsystems became larger than the magnitude of
differences between years. It can only be speculated that
differences late in the experiment (e.g., year 6) are due to
differences in cumulative (e.g., years 1–5) effects and possibly
by the order in which they occurred [8, 18]. Posner et al.
[17] noted that the effect of previous crops in a crop rotation
would not be reflected fully in crop yields until the 3rd year
in a 2-yr crop rotation and, as demonstrated by the current
study, until the 5th year in a 4-yr crop rotation.

Posner et al. [17] questioned whether biologically diverse,
low-input cropping systems can be as productive as conven-
tional, high-input systems? Organically managed cropping
systems have been reported to be less productive than
conventional systems [3, 4]. Crop yields in the conventional
cropping system may be more prone to temporal variation
[4, 19] as indicated by its larger variance estimate (68.4;
Figure 3(a)) as compared to the much lower variance esti-
mated of the organic cropping system (34.97; Figure 3(b)).
Large temporal variance values may result in larger but not
stable total yields. In this study, yields of unfertilized controls
still exceed 50% of the fertilized treatments after six years;
nevertheless, average total yield of the organic cropping
system was 70% of that of the conventional after eight years.

The reliability of using cumulative yield to predict
temporal yield variance, although resulted in different model
fit (Q2) and RMSE values for systems and subsystems (see
(4)–(8)), can be attributed to eliminating the confounding
effects of the differential magnitude of the means caused
by differences among crops, years, management factors, and
their interactions [16]. These estimates provided a powerful
indicator of the cumulative influence of multiple factors on
total crop yields during eight years. Additionally, the PLS
regression models used to predict temporal yield variance,
unlike ordinary multivariate linear regression models, took
into consideration the variation in the predictors (i.e.,
cumulative yields), the predicted variable (i.e., temporal
yield variance), and their joint variation [20]; therefore,
PLS is considered more useful than ordinary multivariate
linear regression in obtaining more parsimonious models
for predicting yield variation. Depending on the cropping
system or clustered subsystems, PLS models were effective
in detecting the “variables” (i.e., cumulative yield over time)
that explained up to 71% of total variation in temporal yield
variance [9, 20].

This and a few other similar studies [12] demonstrated
that cropping systems can influence the temporal variation
and stability of crop yields; however, the multi level statistical
analyses in this study provided reliable quantitative estimates
of the deviation of modeled temporal variances from mea-
sured ones [13] and eliminated the confounding effects of
the differential magnitude of the means caused by differences
among crops, years, management factors, and their interac-
tions. Furthermore, the multi level statistical analyses helped
identify subsystems with high but less temporally stable yield
(C2CTYF; Figure 2(a)), intermediate yield and temporal
yield variance (e.g., O2CTYF and C4CTNF), and low but
stable yield (O2STNF) within each of the conventional and
organic cropping systems. Although inferences, based on the
current analyses, will be restricted to the particular eight

years during which the experiment was conducted, it will be
possible to make general inferences when the variability due
to sequences of environmental characteristics is quantified
and accounted for in the statistical analyses [8]. Nevertheless,
the data is invaluable in agronomic modeling studies and
will be used in conjunction with long-term historic and
simulated weather data [14] to predict crop yield and its
temporal variation.

5. Conclusions

Multivariate statistical analyses of annual and cumulative
crop yields during the course of a long-term experiment
identified stable and productive subsystems within each
of conventional and organic cropping systems. The study
provided evidences indicating that differences in manage-
ment among cropping systems contributed differently to the
goal of achieving the yield potential of each cropping sys-
tem. Several statistical descriptors, including mean-variance-
skewness of cumulative crop yields, were used to construct
cumulative density functions and provided reliable indica-
tors of yield stability in a long-term cropping systems exper-
iment when subjected to repeated measurements, principal
components, and partial least squares regression analyses.
Results of the study may help farmers, agronomists, and crop
consultants identify novel components of cropping systems
that can be implemented on the farm with less external
inputs and may result in reducing temporal variation of crop
yields.
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